Multiservice Provisioning Platform (MSPP) & Resilient Packet Ring (RPR)

Multiservice Provisioning Platform (MSPP) & Resilient Packet Ring (RPR)

Multiservice Provisioning Platform (MSPP):

Multiservice Provisioning Platform (MSPP) is deployed in the boundary of Access and Metro core backbone. TEC has prepared two different platforms for catering to the needs of the inter city and intra equipment. The first platform is the STM-16 with the GFP-F, GFP-T protocols and layer-2 switching functionality and caters to the need of inter-city traffic.  This platform also includes higher cross connect capability, and supports EoS as per IEEE standards. The second platform is using Multi service Provisioning Platform (MSPP), and caters to the need for the intra-city traffic requirements.

The main application of this system shall be for multi-service traffic switching and aggregation at MAC layer, traffic grooming and traffic consolidation of TDM traffic at SDH layer from access network towards core network. Another prominent application of MSPP shall be, multiple SDH ring inter connection at STM1 tributary interfaces as well as at STM4 & 16 aggregate interfaces. The equipment shall provide an integrated cross connect matrix to switch digital signals at SDH layer.

The MSPP equipment shall be capable of simultaneously interfacing the PDH streams and mapping / de-mapping into SDH payloads and vice-versa, thus enabling the co-existence of SDH & PDH on the same equipment. This is the greatest advantage for the network as SDH and PDH existing in the present network can integrate easily which in turn enables quick bandwidth provisioning to the customer.

MSPP is implemented with two different back haul transmission rates, viz. STM-16 and STM-64. TEC has also been working on the STM-64 in BSNL Metro networks. Apart from the standard interfaces on the tributary side, the revised STM-16 provides POS (packet over SDH) capability on Ethernet interface at 10Mb,100 Mb, and 1000Mb. The equipment is also envisaged to support DS-3 of SONET. The encapsulation of Ethernet on SDH capability shall be in accordance with ITU-T G.7041. the system should support Tandem Connection Monitoring (TCM) on N1 byte and N2 byte for HO path  & LO path respectively.

ADMs supporting GFP and VCAT are known as Multi Service Provisioning Platform (MSPP). Service providers can now deliver packet based transport services using existing SDH infrastructure. GFP and VCAT is located at the endpoint s of the network, therefore MSPP need only be deployed at the edge of the transport network. MSPP targets all application connecting ultra-high capacity backbones to end customers at their premises. The advent of GFP has created a spur of customer located equipment and MSPP cards that function as aggregating Ethernet traffic onto SDH rings. The generic structure of a next generation MSPP is shown in (fig1). This platform consists of the integration of metro WDM with Ethernet /RPR and SDH VC-4 switching fabrics. Integration means both direct inter working, in terms of WDM wavelengths, and full NMS/control plane integration for management and path provisioning.

MSPP Applications

Features of MSPP:

The major features of MSPP are as listed below:

  1. Generic Framing Protocol-Frame (GFP-F)
  2. Generic Framing Protocol-Transparent (GFP-T)
  3. Link Capacity Adjustment Scheme (LCAS).
  4. Virtual concatenation (V-CAT)
  5. Layer 2 switching.
  6. Integrated higher cross connect capability
  7. Ethernet on SDH (EoS)
  8. PoS capability on Ethernet interface
  9. DS-3 tributary interface of SONET hierarchy
  10. Support block code oriented payload (FICON)
  11. ESCON (Enterprise system connection)
  12. FC (Fiber Channel) at gigabit Ethernet interface
  13. Tandem Connection Monitoring (TCM) on N1 & N2 bytes
  14. Multi service traffic switching
  15. Traffic aggregation at MAC layer
  16. Traffic grooming
  17. Traffic consolidation of TDM traffic at SDH layer from access towards core network.
  18. Multiple SDH rings interconnection at STM-1tributary interfaces as well as at STM-4/16 aggregate interfaces.
  19. Interfacing the PDH streams (2Mb, 34Mb, 140Mb) and mapping / De-mapping into SDH payloads and vice-versa.

Key Technologies

A key set of technologies for delivering client services efficiently via MSPP are:

  • Generic Framing Procedure (GFP), ITU-T G.7041
  • Link Capacity Adjustment Scheme (LCAS), ITU-T G.7042
  • Virtual Concatenation (VCAT), ITU-T G.707

VCAT is used to provide better data granularity, GFP is used to wrap the data in a converged TDM network, & LCAS is used to dynamically allocate& manage B/W.

Resilient Packet Ring (RPR)

Ethernet can be transported over SDH using one of the two possible mechanism or a combination of  both:-

  1. SPRs
  2. RPRs

Shared Protection Ring MSPPs supports SPRs to provide Ethernet and packet transport over SDH infrastructure. The implementation of this technology varies from vendors to vendors. It allows the provisioning of bandwidth on the SDH ring for packet transport by statistical multiplexing Ethernet traffic on to a shared packet ring (Circuit) that each MSPP node can access.

SPR technology is a precursor to true RPR. SPR processes inherent deficiencies that limit the scalability of the SPR solution. At every node on the SPR ring, a router or switch will process each packet which can be time consuming for a large network rings. As a result Ethernet will have trouble meeting the jitter and latency requirement for voice and video. Conventional SDH has implemented improvements, such as VCAT and LCAS, to suite data application. However, SDH transport creates point to point circuits that are not particularly suited for data applications. SDH also reserves bandwidth for every source on the ring and prevents nodes from claiming unused bandwidth.

Over few years demand for Internet protocol is growing at a fast pace while voice demand is remaining more or less stable. Circuit switched voice traffic has to be converted into packet switched data traffic. This does not match with the present SDH technology. Protocols like Frame relay, ATM &PPP are inefficient, costly and complex to scale the increasing demand for data services.

One of major advantages of RPR is that it protects existing investments in fibre and other transmission infrastructure. Most of the metro area fibre is ring based; therefore RPR will best utilising existing fibre facilities. Moreover, apart from dark fibre, RPR can also operate over SDH or DWDM equipment, allowing smooth and efficient migration.

RPR is a MAC layer, ring based protocol that combines intelligence of IP routing and statistical multiplexing with the bandwidth efficiencies and resiliency of optical rings. RPR network consist of two counter rotating fibre rings that are fully utilized for transport at all times for superior fibre utilisation. RPR permits more efficient use of bandwidth using statistical multiplexing. It also eliminates the need for manual provisioning, because the architecture lends itself to the implementation of  automated provisioning.

Have any Question or Comment?

Leave a Reply

Your email address will not be published. Required fields are marked *

error: Content is protected !!